Asymptotic expansions for moments of skew-normal extremes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate extremes of generalized skew-normal distributions

We explore extremal properties of a family of skewed distributions extended from the multivariate normal distribution by introducing a skewing function π . We give sufficient conditions on the skewing function for the pairwise asymptotic independence to hold. We apply our results to a special case of the bivariate skew-normal distribution and finally support our conclusions by a simulation stud...

متن کامل

Asymptotic expansions for distributions of extremes from generalized Maxwell distribution

In this paper, with optimal normalized constants, the asymptotic expansions of the distribution of the normalized maxima from generalized Maxwell distribution is derived. It shows that the convergence rate of the normalized maxima to the Gumbel extreme value distribution is proportional to 1/ log n.

متن کامل

Asymptotic expansions of moments and cumulants

Many parameters may be expanded as series with terms involving products of expectations and their estimates expanded as series involving products of averages. The computation of moments and cu-mulants of such estimates may be organized if the terms of the series expansions of parameters, estimates and their moments are considered as functions applied to lists. The lists form a vectors space ass...

متن کامل

Tail Properties and Asymptotic Expansions for the Maximum of the Logarithmic Skew-Normal Distribution

We discuss tail behaviors, subexponentiality and extreme value distribution of logarithmic skew-normal random variables. With optimal normalized constants, the asymptotic expansion of the distribution of the normalized maximum of logarithmic skew-normal random variables is derived. It shows that the convergence rate of the distribution of the normalized maximum to the Gumbel extreme value distr...

متن کامل

Expansions for Quantiles and Multivariate Moments of Extremes for Distributions of Pareto Type

Let Xnr be the rth largest of a random sample of size n from a distribution F (x) = 1− ∑∞ i=0 cix −α−iβ for α > 0 and β > 0. An inversion theorem is proved and used to derive an expansion for the quantile F−1(u) and powers of it. From this an expansion in powers of (n−1, n−β/α) is given for the multivariate moments of the extremes {Xn,n−si , 1 ≤ i ≤ k}/n1/α for fixed s = (s1, . . . , sk), where...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2013

ISSN: 0167-7152

DOI: 10.1016/j.spl.2013.02.010